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Abstract

In this essay we review some of the alternative topologies that have
been considered on Lorentzian manifolds in order to embed the causal
structure of spacetime on a more fundamental level. We give a possible
explanation of why none of these topologies are metrizable. We then
make an attempt to generalize the formalism of Riemannian geometry to a
“causal” topology by constructing “causal manifolds” and we explain why
this fails. Then we turn our attention to the tangent spaces and discuss
how we might still be able to define a tangent space such that straight
lines are locally homeomorphic to geodesics. Finally we take a look at
the possibility of endowing such a tangent space with a different vector
space structure that encompasses the structure of relativistic addition of
velocities. At the end of this essay we discuss possible implications of
these mathematical considerations for the field of quantum gravity.

Introduction

Behind the world of general relativity that Einstein created in the early twen-
tieth century, seems to lie a beautiful mathematical structure that was already
available well before Einstein’s discovery: that of Riemannian geometry. Rie-
mannian geometry is the study of manifolds that are endowed with a Rieman-
nian metric, which is a positive-definite inner product on the tangent spaces.
It happens to be so that in Riemannian geometry the different induced notions
of a topology coincide very nicely. On the one hand, in order to be a manifold,
the space must locally have the same topology as Rn . On the other hand, the
Riemannian metric itself also induces a topology - it induces distances on the
manifold, which induce a basis of topology via the collection of open balls with
different radii. This topology is the same as the previous one. Then thirdly,
the Riemannian metric also induces a unique diffeomorphism that preserves the
lengths of some geodesics between the tangent space at a point and a neighbor-
hood of the point in the manifold: the exponential map. The tangent space is Rn

viewed as a vector space, and therefore has a unique Hausdorff n-dimensional
topology as a topological vector space. This topology is again that of Rn , and
this is locally carried down to the manifold by the exponential map, so all three
notions of a topology coincide on a Riemannian manifold.
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Unfortunately, the setting of general relativity is in fact not Riemannian ge-
ometry at all. It is an in many aspects analogous area of mathematics called
pseudo-Riemannian geometry, where we endow the tangent bundle with a bi-
linear structure that is symmetric and nondegenerate, but not positive-definite.
For a long time this subject was not very popular with mathematicians [1, 2],
which is not very surprising since, though many theorems from Riemannian ge-
ometry can be generalized to these spaces, the structure is just not as beautiful.
For example, pseudo-metrics do not in general induce a topology, so there is
no nice generated topology to coincide locally with the topology of Rn . Gen-
eral relativity restricts itself to the subclass of Lorentzian manifolds, where the
pseudo-metric is at every point conjugate to a metric with trace n− 2, where n
is the dimension of the spacetime.

There are a few reasons why we might consider giving such a manifold a differ-
ent topology. Let us consider the simplest example of a Lorentzian manifold,
namely Minkowski space. Minkowski space is usually endowed with the normal
Euclidean topology of Rn . But Rn is locally homogeneous, whereas Minkowski
space has an intrinsic general direction of time, or a light cone, attached to
each point. Another argument is the fact that the group of homeomorphisms
of Rn contains all kinds of elements that exchange spacelike and timelike direc-
tions, which is not an action that is physically allowed. But we would like to give
this homeomorphism group1, and the diffeomorphism group in the differentiable
case, a physical interpretation that could be useful in constructing a theory of
quantum gravity [3]. This can only be done if the elements at least leave the
causal structure of Minkowski space invariant, and therefore the topology would
need to have an intrinsic incorporation of causality.

But changing the topology of a space is in some sense equivalent to changing
what functions and curves are “nice”. In particular, if we change the topol-
ogy on a Lorentzian manifold, then it will not be possible to define a “nice”
coordinate system xµ(p) at each point. This is because the space is not locally
homeomorphic to Rn anymore, so there will be no functions that are continuous
and continuously invertible from a subset of the space to a subset of Rn . So
if we introduce such a new topology on a Lorentzian manifold, the space will
no longer be an actual manifold. However, we might try to define another co-
ordinate system that does not locally map our space to Rn , but to some other
space, with which it is locally homeomorphic.

This would amount to trying to construct a different concept of a manifold:
a causal manifold, a space that is locally, in coordinate neighborhoods, dif-
feomorphic to a new “Minkowski space” Mn with a different “causal” topol-
ogy, such that we have smooth transition maps between the coordinate charts.
These diffeomorphisms then form the coordinate system that maps points in
the Lorentzian space to points in Mn with their “Minkowski coordinates”.
Such a causal manifold would have an intrinsic notion of causality, even before
we endow it with a pseudo-Riemannian structure, if we incorporate this into the
topology of Mn . In fact, even without the coordinate functions, the topology of

1Mathematicians usually call this the automorphism group, as it consists of homeomor-
phisms from the space to itself.
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the manifold would then encode causality, because it would locally be the same
as the causal topology of Mn .
But what should this topology on Mn be? Is it possible to create such a struc-
ture at all? In particular, can a topology be restrictive enough to incorporate
causality, but lenient enough to allow the causal manifold to be curved? The
answer is in fact that this probably can not be done.

Apart from a local coordinate system, we might want to look at the derivatives of
curves, or the tangent spaces of a Lorentzian manifold. Can they be generalized
if we choose another topology? In (pseudo-)Riemannian geometry we have a nice
notion of an exponential map, a diffeomorphism from the tangent space to the
manifold that preserves the lengths of geodesics through the base point. Again,
if we use Rn as the tangent space, this can not be a diffeomorphism anymore if we
change the topology of the manifold. Can we choose another notion of a tangent
space such that the exponential map is a local diffeomorphism everywhere? The
answer again turns out to be no, but if we only demand that the exponential
map is a homeomorphism on the geodesics, then it might be possible to define
such a tangent space.
At any rate, the tangent space is also in particular a vector space, and inde-
pendently of whether we can make the exponential map diffeomorphic, it might
be interesting to see whether we can adept the vector space structure. (This
might be related to the open question at the end of exercise 3 of the course.)
In this way we might be able to at least define derivatives of geodesics. But
there are more reasons why we might want to change the vector space structure.
For example, we might want to incorporate the physical notion of addition of
velocities in Minkowski space into the vector space addition structure.

In this essay we first take a look at the different topologies that have been
considered in the past by Zeeman [4], Nanda [5, 6, 7], Göbel [2] and Hawking,
King and McCarthy [8], and we note their advantages and disadvantages. We
shall see how these results contradict the construction of a causal manifold.
We also give a possible answer to the question of why no metrizable causal
topologies have been found and we present a few new examples of topologies
that we find might be interesting to study. After this, we take a closer look
at defining a different vector space structure on the tangent spaces. We see
whether we can replace the vector space structure by an augmentation of the
structure of a gyrospace that was introduced by Ungar [9], that incorporates the
modified notion of addition of velocities in special and general relativity. Then
finally we discuss possible implications of these mathematical structures for the
field of quantum gravity.

“Causal” Topologies

In this section we give a summary of some of the properties of a few of the topolo-
gies that have been considered in the past as causal topologies on spacetime, in
near chronological order. It is evident that this list should start with Zeeman,
as he was the first to publish on the matter of the topology of Minkowski space
and also the first to express causality as a mathematical structure of partial
ordering. But let us be clear that what follows is not a list of all the topologies
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that have been proposed afterwards, just of those that have been discussed most
in literature.

The fine topology
Sir Christopher Zeeman was the first to give a possible solution to the problem
of a causal topology on Minkowski space. In 1966 he proposed the fine topol-
ogy on four-dimensional Minkowski space M , which is defined to be the finest
topology (with the most open sets) such that the restriction of the topology
to every spacelike hyperplane is the 3-dimensional Euclidean topology and to
every time axis is the 1-dimensional Euclidean topology [4]. He proved that the
homeomorphism group of this space is the causality group and that therefore
the light cone at each point can be deduced from the topology alone.
The causality group was defined by Zeeman in [10] to be the group of home-
omorphisms of Minkowski space with the Euclidean topology that leave the
partial ordering of causality invariant. He proved that the causality group
equals the group generated by orthochronous Lorentz transformations (rota-
tions, boosts and reflections in space), translations and dilatations (multiplica-
tions by a scalar). Note that this topology is intrinsically linked to the Euclidean
topology because the causality group is a subgroup of the homeomorphism group
of Rn .
A timelike path through this space is continuous if and only if it is piecewise
linear, because then every piece is part of a time axis that is by definition
homeomorphic to the piece of the interval from which the curve is defined in R.
A lightlike path, however, is never continuous, since the restriction topology on
the lightlike surfaces is the discrete topology and therefore an interval in R can
never be homeomorphic to it. This intuitively agrees with the fact that we have
no evidence of a photon other than the events of its emission and absorption,
according to Zeeman.
There are some downsides to this topology, however. Although it is Hausdorff,
connected and locally connected, it is not normal, locally compact or first count-
able: it does not have a countable neighborhood basis. This is well demonstrated
in the fact that, precisely because the discrete topology is induced on a lightlike
surface, such a surface has zero Lebesgue covering dimension2, with every point
disconnected from the other points. This might be “physical”, since it implies
there is no topological information to be found on light rays, but it makes the
fine topology very hard to work with.
A recent explicit study of all the properties the fine topology can be found in an
article by Dossena [11]. Dossena also proves in this work that the 2-dimensional
Minkowski space with the fine topology is not simply connected: not all paths
are not continuously contractable. This result can probably be generalized to
higher dimensions. In what measure a space is simply connected has a lot of
topological consequences, for example in the study of the fundamental group.
Furthermore, whether a path is contractible is probably also relevant to certain
area’s of quantum field theory. It is unclear at this point whether or not it is
physically attractive to have a simply connected space.

2The Lebesgue covering dimension is the smallest number n such that every open covering
can be refined to a cover where every point is contained in at most n + 1 sets.
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The t-topology
Zeeman also proposed a few alternative topologies in his 1966 article [4]. The
first two are finer than the fine topology. The t-topology is the finest topology
such that the Euclidean topology is induced on the time axes only. The spacelike
planes now get a discrete topology as well as the lightlike surfaces. It still holds
that the only continuous timelike paths are piecewise linear. Any continuous
path that is not necessarily directed positively in time at every point, is always
a piecewise linear path that can switch between being timelike or anti-timelike,
exactly like the Feynman path of, for example, an electron. Note that these
paths are also continuous in the fine topology, but in the t-topology they are
the only continuous paths.
Nanda showed in 1970 that the homeomorphism group of Minkowski space with
the t-topology is again the causality group [5]. Recently the t-topology was
revisited by Agrawal and Shrivastava in [12], and they proved that 2-dimensional
Minkowski space with the t-topology is not simply connected. This result can,
again, probably be generalized to higher dimensions.

The s-topology
Zeeman defined the s-topology to be the finest topology on M such that the
Euclidean topology is induced only on the spacial hyperplanes. The time axes
will have the discrete topology just like the lightlike surfaces. The space is Haus-
dorff, but not normal, not locally compact and not second countable. Nanda
showed that its homeomorphism group is again the causality group [5]. Domi-
aty showed in 1984 that the extension of the s-topology to arbitrary manifolds
- as the finest topology such that any spacelike hypersurface has the Euclidean
topology - is 0-semimetrizable, which is a rather nice property for a space that
is not metrizable [13].
The proof of Agrawal and Shrivastava that the 2-dimensional t-topology is not
simply connected can probably be extended to the 2-dimensional s-topology
[12].

The order topology
Another, very different, topology on Minkowski space that has the causality
group as a homeomorphism group, is the order topology. It was introduced in the
PhD thesis of Vroegindeweij [14], and Nanda and Panda proved that it is, unlike
the above examples, simply connected [6]. The order topology is generated by
the sets that are the complete forward light cone of a point, excluding the
lightlike surfaces and including the point itself. It is so coarse that it does not
contain the Euclidean topology and it is not Hausdorff. Note, however, that the
induced topology on spacelike hypersurfaces is again the discrete topology, as
the intersection of the forward light cone with a hyperspace through that point
is the point itself.

Göbels extension
In 1976, Göbel extended the fine topology of Zeeman to an arbitrary Lorentzian
manifold. He defined the Zeeman topology to be the finest topology on a
Lorentzian manifold such that every restriction to a spacelike hypersurface or a
timelike geodesic is locally Euclidean [2]. For the moment, we will refer to such
a space a Zeeman manifold.
Göbel showed that the group of homeomorphisms of such a spacetime is the
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group of homothetic transformations, or constant conformal transformations.
This means that two spaces are homeomorphic if and only if they are isometric
up to a factor, because if a homothety between the spaces exists, we can always
compose it with an another homothety from one of the spaces to itself that
cancels the factor and the resulting composition will be an isometry. This also
means that the pseudo-metric can be reconstructed up to a constant from the
Zeeman topology alone.

Proposition: A Zeeman manifold is only locally homeomorphic to Mn with
the fine topology if it is flat.

Proof: Suppose M is locally homeomorphic to Mn . We restrict ourselves to
one patch U ⊂ M that is homeomorphic to V ⊂ Mn . These are both spaces
endowed with a Zeeman topology, and they are homeomorphic, therefore they
are isometric up to a constant. Since Mn and therefore V have a flat metric, so
does U . This holds for every homeomorphic patch, so M is flat everywhere.
Q.E.D.

This result is a direct consequence of the fact that the topology determines so
much of the geometry of the space. It also implies that if we would try to give
a curved Zeeman manifold a tangent space at each point, neither Rn , nor Mn

with the Zeeman topology, nor any other space will give us a diffeomorphic
exponential map at every point: the topological structure of the space itself is
not locally the same at every point because it depends on the geometry.

The path topology
Hawking, King and McCarthy were not satisfied with the fact that only piece-
wise straight lines or piecewise geodesics are continuous in the fine and Zeeman
topologies. They argued that even in a flat spacetime, particles might be experi-
encing forces of another nature than gravity, and therefore follow an accelerated
path. So they defined the path topology to be the finest topology such that any
“continuous” timelike path is continuous [8]. Here the first notion of contin-
uous is in the sense of the Euclidean topology and the second in the sense of
the path topology. The homeomorphism group of the path topology is not the
causality group but the larger conformal group of transformations that induce
a conformal transformation on the pseudo-metric, which Hawking et al. found
more physically appealing.
The path topology is defined in flat spacetime as well as in curved spacetime.
Agrawal and Shrivastava write in their article [12] that a referee had noted
that on 4-dimensional Minkowski space, the path topology is the same as the
t-topology. They pose this claim without further proof. We suspect however
that this claim is in fact false, since Zeeman proves in his article [4] that a finite
continuous timelike path in the fine topology is always a connected sequence of
a finite number of straight lines, and it seems like this result can be generalized
to the t-topology. This would mean that an accelerating path is not continuous,
while in the path topology it is - by definition. Zeeman actually claims that he
has generalized the result in his article, but does not give the proof. However,
for the fine topology the proof makes use of Zeno sequences - sequences that
converge in the Euclidean but not in the fine topology - and these can also be
used in the case of the t-topology.
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In 2010 Low proved that n-dimensional Minkowski space with the path topology
is not simply connected [15]. In fact, he proves that the space is “as non-simply
connected as it gets”, showing that no two closed Feynman paths are homotopic.
A nice feature of the path topology, however, is that it is first countable: it
has a countable basis of neighborhoods. These “balls” around a point x can be
constructed by taking the intersection of a normal Euclidean ball with radius r
with the open forward and backward light cone of x and adding x itself. Taking
the collection of radii to be { 1n : n ∈ N}, we get a countable basis. Note that the
restriction of such a ball to a spacelike surface through x is exactly the point x
itself, so that we indeed get the discreet topology on spacelike surfaces.

The A-Topology
Nanda thought it was unnatural that in the fine, t- and s-topologies, light is
deprived of the privilege of traveling on a continuous path. Therefore he defined
the A-topology, a subset of the fine topology, as the finest topology such that the
1-dimensional Euclidean topology is induced on timelike and lightlike axes, while
the 3-dimensional Euclidean topology is induced on the spacelike hyperplanes
[7]. Since in this topology every straight line gets the 1-dimensional Euclidean
topology, all straight lines will actually be 1-dimensional, unlike in the fine,
t- and s-topologies. It is not clear whether this also holds for all 2- and 3-
dimensional (hyper)surfaces.

Alexandrov topology
We can view a Lorentz manifold as a partially ordered set (poset) with causality
as a partial order, and as such we can endow it with the poset or Alexandrov
topology. This topology is generated by intersections of the open past and future
light cones of the points in the space, so sets of (elongated) rhombi. In general
it is coarser than the locally Euclidean manifold topology, but it is equal to the
manifold topology if and only if a space is strongly causal. Strongly causal means
that in the manifold topology, every point has arbitrarily small neighborhoods
that are causally convex, meaning that light- or timelike geodesics pass through
it only once [16]. Minkowski space is strongly causal, so the Alexandrov topology
reduces to the Euclidean topology for Minkowski space, and then the definition
of a causal manifold reduces to that of a normal manifold. Obviously we then
loose the property that the topology is “casual”: we can not recover the light
cones from the topology. McWilliams showed in 1980 that the Alexandrov
topology is also complete exactly when the spacetime is strongly causal [17].

Metrizability
None of the above topologies are metrizable, and in [13] Domiaty wonders why
no metrizable topologies on Lorentzian manifolds have been found. But for
a compact metric space holds that if it is finite-dimensional, then it can be
embedded in R2n+1 with the Euclidean topology [18]. So if we want to construct
a compact Lorentzian space with a new topology, this implies that the topology
cannot be metrizable and finite-dimensional at the same time, or it will be equal
to the Euclidean topology.
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Causal manifolds?

Why it would be very nice to define a causal manifold
As has been explained in the introduction, it would be very nice to extend the
concept of a manifold to causal spaces that have the causality group or some
other “causal” group as the homeomorphism group. One of the advantages
of such a construction would be that we can define a continuous coordinate
system as a map from the manifold to some “Minkowski space” that is locally
homeomorphic to the manifold. Another nice feature would be that we would
have this Minkowski space around that could then also play the role of a tangent
space, with an exponential map that is locally diffeomorphic. Having defined
these structures, we might be able to do extend our knowledge of differential
and Riemannian geometry, and define concepts like curvature, and make sure
that the theorems from Riemannian geometry all hold nicely. In fact, it is not
clear what the use is of defining a new topology on Lorentzian manifolds, if we
can not do this. What kind of mathematics can we do on this spaces without
being able to define continuous coordinates or tangent spaces?

Why the causal manifold doesn’t work
Unfortunately, it is not possible to define such a causal manifold that is non
trivial. The reason for this is that the causal structure itself already deter-
mines too much of the geometrical structure of the manifold. This is shown by
the fact that, as Zeeman proved in [10], the only homeomorphisms that leave
the causal structure intact are the elements of the causality group. But these
transformations do not allow for the space to be homeomorphic to a space with
a pseudo-metric that is not related to the original one by a causal transfor-
mation. Starting out with a flat space, the only spaces that will be (locally)
homeomorphic are flat too.
Even if we extend the causality group to the conformal group like Hawking et
al., the spaces can only be homeomorphic if they are related by a conformal
transformation. A general curved spacetime will not be locally conformally the
same in all small enough neighborhoods, and therefore it will not locally be
homeomorphic to itself.
In the next chapter we see how we might still be able to define tangent spaces
that are not locally homeomorphic to the space, but for which the exponential
map restricted to the straight lines, which are mapped to geodesics through the
base point, is a homeomorphism of curves.

Something that might still be interesting?
One thing that might still be interesting to study, is whether we can define
a topology that is a little less strict than the previous ones, and maybe more
like the manifold topology. We know that it has to be fairly restrictive in
order to be “causal” - to have the causality group or the conformal group as
a homeomorphism group. But maybe we can define a topology that is the
coarsest topology such that a condition holds, instead of the finest. We give a
few examples of topologies on Mn that we think might be interesting to study:

Example 1a: The coarsest topology containing the Euclidean topology, such
that the homeomorphism group of the space is the conformal group. We are
not sure whether it can be determined what this topology is, since it is not
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clear whether and how we can construct all the topologies that have a partic-
ular homeomorphism group [5]. The condition that the Euclidean topology is
included ensures that the space is Hausdorff, which we know we should restrict
to explicitly because there is at least one causal topology that is not Hausdorff:
the order topology.

Example 1b: The coarsest Hausdorff topology such that the homeomorphism
group of the space is the causality group. It is not clear why exactly the Eu-
clidean topology should be a subset of a causal topology, other than in order to
make it Hausdorff. It might turn out that in order to be Hausdorff, the topol-
ogy needs to contain the Euclidean topology, in which case Example 1b equals
Example 1a. If this is not the case, then it is still not clear whether it is possible
to find this topology.

Example 2: The finest topology such that the homeomorphism group of the
space is the causality group, and such there is some notion of a topological
dimension that gives any subspace the same dimension as it has in the Euclidean
case (dimensionality condition). The A-topology is possibly a topology that
satisfies this dimensionality condition, but is then it is probably not the finest
topology to do so.
It is quite probable that Example 1a satisfies the dimensionality condition, since
adding more sets to the Euclidean topology can only lower the Lebesgue cov-
ering dimension. Since we add as little sets as possible in Example 1a, it is
obvious that, if a causal topology can be constructed such that the dimension-
ality condition for the Lebesgue dimension is satisfied, Example 1a will satisfy
it.
Note that for spaces that are not metrizable, there are a number of different
notions of dimension in topology. In fact, there is a whole field devoted to the
study of dimensional invariants in topology: Dimension Theory.

Example 3: A (the?) n-dimensional Hausdorff topology such that a certain
“causal” vector space structure is continuous. This is in analogy with Rn ,
where the topology of the topological vector space, when asked to be Hausdorff
and finite-dimensional, is exactly the Euclidean topology. In the next section
we will study what is meant here by a causal vector space structure.

The Minkowski vector space

A tangent space in a point on a manifold can be viewed as the space of equiv-
alence classes - derivatives - of nice curves through that point, with a certain
addition structure: addition of velocities. If we change the topology of the
manifold, we change what curves are to be considered as nice curves.

“Nice” curves
In a space with a Euclidean topology, a curve is continuous precisely when it
is connected. This is because we define a curve as the image of an (injective3)

3If the map is not injective, then we can change the dimension of the image. A constant
curve or a plane-filling curve for example is not injective. We use the theorem that a continuous
bijection from a compact to a Hausdorff space is a homeomorphism.
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map from a Euclidean interval into the space. The restriction topology on
a 1-dimensional subspace in a Euclidean space is Euclidean exactly when the
subspace is connected, so then the curve can be the image of a homeomorphic
map. So the notion of a “nice” curve in a manifold is not very restrictive.
When we give the Minkowski space a different topology, then curves might not
be continuous while they are connected, because the restricted topology is not
Euclidean. This mathematical artefact is used to define a few of the topologies
that were mentioned before. But it can happen that the restriction topology
on the curve is not the Euclidean topology, while the curve can in some sense
be considered to be “nice”. Here I mean by nice that they are, for example,
homeomorphic to a timelike, spacelike or lightlike line in Mn , and they indeed
have that same character as a curve in the manifold.
We might be able to use “intervals” in Minkowski space to parametrize curves
instead of intervals of R, and then these curves can be considered to be contin-
uous. We then do not use homeomorphisms of open coordinate patches, which
as we have shown are not available, but just the homeomorphisms of topologies
that are induced on the one-dimensional “curves” and “intervals”.

Tangent space
A restriction we might now be able to impose on defining a causal topology on
a Lorentzian manifold, is that it agrees with the causal topology of Mn in the
following way: at every point, the geodesics in every direction are homeomorphic
with straight lines in Mn . This resembles the definition of a causal manifold,
but whereas that definition was not possible because the space is not locally
isometric, we know that we do have isometries of geodesics to straight lines in
a tangent space at every point. This is what the exponential map tells us: at
every point, we can project a straight line in the tangent space to the manifold.
This locally gives us a geodesic through the point with the same length as the
straight line at every point:

exp : tX 7→ γX(t),

where X is a vector in the tangent space that is also the derivative of the geodesic
γX at 0, and t is the parameter along both curves.
We have already seen that we cannot construct a tangent space at each point
such that the exponential map is a homeomorphism on an open neighborhood.
But the one-dimensional lines do not have any curvature. In a one-dimensional
space we can only vary distances conformally. Therefore it might be possible to
construct a tangent space that is the same at each point such that the projection
of straight lines into geodesics is at least a homeomorphism.

Constructing a tangent bundle
To construct a tangent bundle, which is a space of derivatives of nice curves at
every point, we should first look at the simplest example of a causal space: Mn

itself. When trying to draw the analogy with Rn , we note that the tangent
space of Rn at each point is Rn itself. Extending this idea to Mn is a logical step.
But the tangent space should be a vector space, in which each vector represents
the infinitesimal change of a path on the manifold through the base point of
the tangent space. So what if we make Mn a vector space by defining vector
addition and scalar multiplication to be the same thing as in Rn ? This is what
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is usually done, for example in [4]. We argue here that it might be possible to
change this structure.

Rn can be viewed as a vector space and a manifold at the same time, because the
corresponding topologies coincide. On the one hand, Rn can be endowed with
the Euclidean topology induced by the Euclidean norm, which coincides with the
topology of any smooth deformation or manifold covering of Rn and is therefore
not really bound to the Euclidean metric itself per se. On the other hand, we
have the abstract concept of a topological vector space: a vector space that
comes with a topology which makes vector addition and scalar multiplication
continuous. Demanding that the topology of such a topological vector space is
finite-dimensional and Hausdorff, automatically makes it homeomorphic to Rn

endowed with the Euclidean topology, where n is the dimension of the vector
space. So in the case of Rn , the concepts of manifold structure and vector
space structure really coincide at the deepest level. This means for Riemannian
manifolds that the exponential map, that gives a local diffeomorphism between
a piece of the tangent space and a piece of the manifold, can also carry the
vector space structure down to the base point on the manifold, enabling us to
infinitesimally “add” geodesics (add velocities) at the base point.

We already know that a part of this structure can not be generalized to Lorentz
manifolds with a causal topology, because they are not locally homeomorphic to
some tangent space that is the same everywhere. This is because the topology
will depend locally on the local geometry of the space. It might be possible to
extend the structure to Minkowski space itself, however.
We now give three arguments why we should change the vector space structure
on Minkowski space if we change the topology:

1. As a topological vector space, the topology that is induced on Minkowski
space with the Euclidean vector space structure is the Euclidean topology.
Therefore we again have a discordance in topologies.

2. Addition of certain vectors in the tangent space can be viewed as addition
of velocities. We know from special relativity that addition of velocities
in Minkowski space differs from the usual addition of vectors.

3. With the normal addition we can add a spacelike and a timelike vector to
obtain a timelike, lightlike or a spacelike vector. This does not seem very
physical.

We could therefore try to replace the Rn vector space structure on Mn with a
“causal” vector space structure that reduces to “Minkowskian” addition on the
proper velocities, which are positively oriented timelike vectors with negative
norm 1.

Adding proper velocities in 2D
Let us first look at addition of velocities in two dimensions. In two dimensional
Minkowski space, the rule for adding two velocities, viewed from a third frame,
is:

v3 =
v1 + v2
1 + v1v2

,

11



On the Topology of Lorentzian manifolds Renee Hoekzema

where we have set the velocity of light equal to 1. This formula comes from
applying a Lorentz boost with velocity v1 to the spacetime proper velocity that
belongs to v2 or vice versa. The proper velocity vector that belongs to a velocity
vu is: (

u0
u1

)
=

(
γu
γuvu

)
.

We can therefore write the addition law of proper velocities as:(
u0
u1

)
⊕C
(
w0

w1

)
= Λ(vu)w =

(
γu γuvu
γuvu γu

)(
γw
γwvw

)
=

(
u0 u1
u1 u0

)(
w0

w1

)
,

where ⊕C stands for “causal”4 addition in a Minkowski space and γi = 1√
1−v2i

.

More dimensions
Unfortunately, in more than two dimensions, this addition process is not asso-
ciative and not even commutative. What velocity vector we end up with, when
we add two velocities, depends on which frame we boost to first. This effect
can been seen as a relativistic correction to the spin of an elementary particle
or to the rotation of a relativistic gyroscope. It is called Thomas precession and
was discovered by Thomas in 1926 [19]. In mathematical terms, it stems from
the fact that the composition of two non-parallel Lorentz boosts is not a pure
boost, but a combination of a boost and a rotation, called the Thomas rotation.
The formula for adding two velocities in more than two dimensions becomes:

v1 ⊕C v2 =
1

1 + v1 · v2

(
v1 +

v2

γ1
+

γ1
1 + γ1

(v1 · v2)v1

)
.

While this operation is not associative or commutative, it does obey the gyro-
commutative and left and right gyroassociative laws [9]:

v1 ⊕C v2 = gyr[v1;v2](v2 ⊕C v1)

v1 ⊕C (v2 ⊕C v3) = (v1 ⊕C v2)⊕C gyr[v1;v2]v3

(v1 ⊕C v2)⊕C v3 = gyr[v1;v2]v1 ⊕C (v2 ⊕C v3),

where gyr[u;v] is the Thomas rotation that takes v ⊕C u to u⊕C v. Together
the set of proper velocities with relativistic addition therefore form a gyrogroup.

Scalar multiplication
In a gyrogroup, we can also define a notion of scalar multiplication, for which
holds:

n�C v = v ⊕C ...⊕C v︸ ︷︷ ︸
n times

.

It turns out that in this case the formula for this scalar multiplication is [9]:

r �C v = tanh(r arctanh(‖v‖))

=
(1 + ‖v‖)r − (1− ‖v‖)r

(1 + ‖v‖)r + (1− ‖v‖)r
v

‖v‖
.

4Ungar denotes this product with a subscript E for “Einstein”. This would be utterly
confusing in our case, as we want to emphasize the contrast with “Euclidean”. On the other
hand, the subscript M for “Minkowski” is used by Ungar to denote “Möbius”.

12
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Together with the addition and scalar multiplication structure, we can call the
space a gyrospace, as a generalization of a vector space.

Proper vectors along geodesics
We now have a gyrospace of proper velocities that are exactly the derivatives
of positively oriented timelike geodesics in Minkowski space, along with their
Minkowskian addition structure. But we want to describe the whole tangent
space, so the derivatives along any straight line through the origin in Minkowski
space. First we will look at the analogy of a proper velocity along paths that
are not timelike and positively oriented. Let us call any vector with absolute
norm 1 a proper vector. We get the set of negatively oriented timelike vectors
and all the spacelike vectors with norm one.
The negatively oriented timelike vectors can be defined to transform in the same
way as the positively oriented ones. Now consider the spacial proper vectors.
We know that when we make a Lorentz boost to a certain frame, the spacial
coordinate in the direction of the boost transforms in a similar but opposite way
compared to the timelike vector. So the spacial directions can probably also be
described by something that looks like a gyrospace.

Figure 1: The collection of proper vectors in M2

Note that in more than two dimensions, these proper vectors form three separate
components in Mn : the past and future light cones and the “space cone”. The
lightlike vectors are not in the set of proper vectors since they have norm zero.
But we can probably define a similar structure for lightlike vectors. We think
it would be a nice to treat all these different pieces separately when forming
a complete “vector space”, and leave the addition of vectors with a different
character undefined.

Extending to the whole of Mn

We have now only considered the vectors of absolute norm 1. To extend the
structure to the whole of Mn , we might be able to just tensor these vectors with
the interval [0,∞). If we still want to give Mn another topology, then we can
give [0,∞) the appropriate topology, possibly a different one for the timelike,
spacelike and lightlike parts. In this way we cover the whole of Mn , possibly in
such a way that we can use it as a tangent space (that maps homeomorphically to
geodesics) at points of a Lorentzian manifold, either with a new causal topology
or with the old manifold topology.

13
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Possible implications for Quantum Gravity

Diffeomorphism group
A nice feature of redefining the topology on spacetimes would be that we then
might be able to use the homeomorphism (or diffeomorphism) group of the space
in the construction of a theory of quantum gravity [3].

Wick rotation
If we choose a different topology for a Lorentz manifold, then this implies that
Wick rotation to a normal Riemannian manifold, with the locally Euclidean
topology, is not a continuous transformation. In the process of Wick rotation
we replace our time-coordinate by an imaginary variable, thereby transforming
the pseudo-metric into a Riemannian metric. We could of course give the Wick
rotated space the same causal topology, but then this topology would not agree
with the metric topology, and the space would not be a Riemannian manifold
either. At any rate, if we endow the Lorentz manifold with another topology,
then it is not at any level isomorphic to a Riemannian manifold anymore. But
this does not necessarily imply that the analogy between a causal manifold and
its Riemannian counterpart does not have any meaning at all.

Triangulations
A triangulation of a topological space can be viewed as a simplicial cell decom-
position of the space. If we endow a spacetime with another topology, then
it will probably not be possible to make a cellular decomposition where the
top-dimension cells are homeomorphic with balls in Rn . In order to make a
cell decomposition of the space, we would then probably need to incorporate
causality in (at least) the top cells. If we then ask that such a top cell is a
simplex, then we can look at the properties of the faces and lower dimensional
boundaries: these might be spacelike, the one-dimensional edges might be light-
like or timelike, or they might change in character. This structure resembles
the procedure in causal dynamical triangulations, where we demand that some
of the faces of simplices are explicitly spacelike [20].

Linearity
If we change the vector space structure on Minkowski space, then the definition
of the word linear will change. Any theory that is linear, might have to be
rewritten into a theory that is “causal linear”. Note that this notion of linearity,
along with the notion of addition of velocities, probably reduces to normal
linearity and velocity addition in the non-relativistic limit.
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